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ABSTRACT
Workflow execution time prediction is widely seen as a key
service to understand the performance behavior and sup-
port the optimization of Grid workflow applications. In this
paper, we present a novel approach for estimating the execu-
tion time of workflows based on Local Learning. The work-
flows are characterized in terms of different attributes de-
scribing structural and runtime information about workflow
activities, control and data flow dependencies, number of
Grid sites, problem size, etc. Our local learning framework
is complemented by a dynamic weighing scheme that assigns
weights to workflow attributes reflecting their impact on the
workflow execution time. Predictions are given through in-
tervals bounded by the minimum and maximum predicted
values, which are associated with a confidence value indicat-
ing the degree of confidence about the prediction accuracy.
Evaluation results for three real world workflows on a real
Grid are presented to demonstrate the prediction accuracy
and overheads of the proposed method.

1. INTRODUCTION
Grid workflows from scientific and business domains typi-
cally consist of several different activities (executables, ser-
vices, etc.) with complex control flow and data flow depen-
dencies among them. Execution of such workflows in large
scale computational Grids, like Grid5000 [25], EGEE [4],
etc., is commonly accomplished through a workflow com-
position and runtime environment like ASKALON [5] for
distributed execution of workflow activities. The workflow
runtime environment depends on online workflow execution
time predictions to guide the performance-oriented opti-
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mization of the workflows.
Predicting the execution time of a workflow in the Grid is a
complex problem and has been largely ignored so far due to
the execution of workflow activities in a distributed fashion,
involvement of several Grid resources (multiple Grid sites,
LAN/WAN, etc.), external load, dynamic behavior of the
Grid, inherent architectural and functional heterogeneity of
Grid resources, and different structures of the workflows.
In this paper we introduce a Local Learning Framework for
workflow execution time prediction, which is based on static
information (number of activities in the workflow, control
and data flow dependencies among workflow activities, etc.)
and dynamic information about the execution of the work-
flows (through execution traces). This information about
workflows is stored in a repository whose data (referred as
workflow data set or simply data set) is used for local learn-
ing (LL). In the course of this paper, we refer to each in-
stance of the data in the data set as data instance. The work-
flows are parameterized in terms of attributes (determined
from the repository) defining workflow static and dynamic
information (Section 2.2). The importance of different at-
tributes w.r.t. their impact on execution time of the work-
flow is determined by attribute weights, which are dynam-
ically determined through an evolutionary algorithm (Sec-
tion 3). These weights are optimized considering the entire
data set (to generalize effects of different values of attributes)
as well as data subsets (to include effects of specific values
of the attributes) and the best weights are selected adap-
tively (Section 3.2). Our local learning framework (LLF )
employs hybrid metrics to find similarities in different work-
flows. The workflows identified to be similar (Section 2.1)
are selected for LL, and the data set corresponding to the
selected workflows is named as local data set. One instance
of the local data set is referred as local data instance. We in-
troduce a notion of distance class (Section 4) to dynamically
select the size of local data such that the overall prediction
error is minimized. We employ three induction models (Sec-
tion 5) to predict workflow execution times (called point
predictions) from the selected local data. A confidence value
(ranging between 0 and 100) is associated with each predic-
tion to indicate the degree of confidence about the prediction
accuracy. A confidence value 100 means that the prediction
is accurate, and a confidence value 0 means that the pre-
diction is unreliable. To indicate possible variations in the
predicted execution of a workflow, the minimum and maxi-
mum predicted execution times are provided as an interval
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