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Abstract. During the past several years, fuzzy control has emerged as 
one of the most active and fruitful areas for research in the applications 
of the fuzzy set theory, especially in the realm of the industrial 
processes, which do not lend themselves to control by conventional 
methods because of a lack of quantitative data regarding the input-
output relations i.e., accurate mathematical models. The fuzzy logic 
controller based on wavelet network provides a means of converting a 
linguistic control strategy based on expert knowledge into an automatic 
strategy. In the available literature, one can find scores of papers on 
fuzzy logic based controllers or fuzzy adaptation of PID controllers. 
However, relatively less number of papers is found on fuzzy adaptive 
control, which is not surprising since fuzzy adaptive control is relatively 
new tool in control engineering. In this paper, fuzzy adaptive PID 
controller with wavelet network is discussed in subsequent sections with 
simulations. An adaptive neural network structure was proposed. This 
structure was used to replace the linearization feedback of a second 
order system (plant, process). Also, in this paper, it is proposed that the 
controller be tuned using Adaptive fuzzy controller where Adaptive fuzzy 
controller is a stochastic global search method that emulates the 
process of natural evolution. It is shown that Adaptive fuzzy controller be 
capable of locating high performance areas in complex domains without 
experiencing the difficulties associated with high dimensionality or false 
optima as may occur with gradient decent techniques. From the output 
results, it was shown that Adaptive fuzzy controller gave fast 
convergence for the nonparametric function under consideration in 
comparison with conventional Neural Wavelet Network (NWN).  

Keywords: Wavelet network, fuzzy logic, PID controller. 

1. Introduction 

It is known that PID controller is employed in every facet of industrial 
automation. The application of PID controller span from small industry to high 
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technology industry. Using Fuzzy controller to perform the tuning of the 
controller will result in the optimum controller being evaluated for the system 
every time. In this paper, the selected model is a second order system which 
may concern the control of a robot arm position or dc motor position and so 
on. Intelligent systems cover a wide range of technologies related to hard 
sciences, such as modelling and control theory, and soft sciences, such as 
the artificial intelligence (AI). Intelligent systems, including neural wavelet 
networks (NWN), fuzzy logic, and wavelet techniques, utilize the concepts of 
biological systems and human cognitive capabilities.  

The above three systems have been recognized as a robust and attractive 
alternative to the some of the classical modeling and control methods. The 
major drawbacks of these architectures are the curse of dimensionality, such 
as the requirement of too many parameters in NWNs, the use of large rule 
bases in fuzzy logic, the large number of wavelets, and the long training 
times, etc. These problems can be overcome with network structures, 
combined two or all these systems [20]. 

Wavelets are mathematical functions that cut up data into different 
frequency components, and then study each component with a resolution 
matched to its scale. The fundamental idea behind wavelets is to analyze the 
signal at different scales or resolutions, which is called multiresolution. 
Wavelets are a class of functions used to localize a given signal in both space 
and scaling domains. A family of wavelets can be constructed from a mother 
wavelet. Compared to Windowed Fourier analysis, a mother wavelet is 
stretched or compressed to change the size of the window. In this way, big 
wavelets give an approximate image of the signal, while smaller and smaller 
wavelets zoom in on details. Therefore, wavelets automatically adapt to both 
the high-frequency and the low-frequency components of a signal by different 
sizes of windows. Any small change in the wavelet representation produces a 
correspondingly small change in the original signal, which means local 
mistakes will not influence the entire transform. The wavelet transform is 
suited for nonstationary signals (signals with interesting components at 
different scales) [19]. This makes wavelets interesting and useful. The sine 
and cosine functions which comprise the bases of Fourier analysis are non-
local (and stretch out to infinity). They therefore do a very poor job in 
approximating sharp spikes. But with wavelet analysis, we can use 
approximating functions that are contained nearly in finite domains. Wavelets 
are well-suited for approximating data with sharp discontinuities [20].  

Fuzzy controller with wavelet network is one of the succeed controller used 
in the process control in case of model uncertainties. But it may be difficult to 
fuzzy controller to articulate the accumulated knowledge to encompass all 
circumstance. Hence, it is essential to provide a tuning capability [2],[3]. There 
are many parameters in fuzzy controller can be adapted. The Speed control 
of turbine unit construction and operation will be described. Adaptive 
controller is suggested here to adapt normalized fuzzy controller, mainly 
output/input scale factor. The algorithm is tested on an experimental model to 
a robot arm of second order transfer function. A comparison between 
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Conventional method and Adaptive Fuzzy Controller with wavelet network is 
done.  

This paper is organized as follows: in Section two, a brief introduction to 
wavelet analysis is presented and a wavelet network is constructed. Section 
three illustrates Proposed Neural Wavelet Network (NWN) structure and 
learning. PID is shown in section four, and its principle of operation and the 
design of its parameters using Ziegler-Nichols frequency method is shown in 
section five. Based on the proposed Neural Wavelet Network, the adaptive 
PID control used to achieve good performance is described in Section six. 
The simulation results and the conclusion are shown in section seven and 
eight. 

2. Review of Wavelet Network 

The origin of wavelet networks can be traced back to the work by Daugman 
(1988) in which Gabor wavelets were used for image classification. Wavelet 
networks have become popular after the work by Pati (1991, 1992), Zhang 
(1992), and Szu (1992). Wavelet networks were introduced as a special feed-
forward neural network. Zhang applied wavelet networks to the problem of 
controlling a robot arm. As mother wavelet, they use the following function [8]:  

)(1))(,(
a
bx

a
xba −
= ψψ  

 
Where a is dilation (i.e. a>0) and b is translation. 
 

The wave-net algorithms consist of two processes: the self-construction of 
networks and the minimization of error. In the first process, the network 
structures applied for representation are determined by using wavelet 
analysis. The network gradually recruits hidden units to effectively and 
sufficiently cover the time-frequency region occupied by a given target. 
Simultaneously, the network parameters are updated to preserve the network 
topology and take advantage of the later process. In the second process, the 
approximations of instantaneous errors are minimized using an adaptation 
technique based on the LMS algorithms. The parameter of the initialized 
network is updated using the steepest gradient-descent method of 
minimization. Each hidden unit has a square window in the time-frequency 
plane. The optimization rule is only applied to the hidden units where the 
selected point falls into their windows. Therefore, the learning cost can be 
reduced [9], [10], [11].  
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3. Proposed neural Wavelet Network (NWN)  

The term “wavelet” as it implies means a little wave. This little wave must 
have at least a minimum oscillation and a fast decay to zero, in both the 
positive and negative directions, of its amplitude. This property is analogous 
to an admissibility condition of a function that is required for the wavelet 
transform. Fig.1a is an example of a wavelet called “Morlet wavelet” named 
after Jean Morlet, the inventor, in 1984 [3]. Sets of “wavelets” are employed to 
approximate a signal and the goal is to find a set of daughter wavelets 
constructed by a dilated (scaled or compressed) and translated (shifted) 
original wavelets or mother wavelets that best represent the signal. So, by 
“travelling” from the large scales toward the fine scales, one “zooms in” and 
arrives at more and more exact representations of the given signal. Figs. (1a, 
b, c and d) display various daughter wavelets where a is a dilation and b is a 
translation corresponding to the Morlet mother wavelet [3]. 

The mother wavelet must satisfy the following admissibility condition and 
any admissible function can be a mother wavelet.  

 
Fig. 1. Dilated and Translated Morlet Mother Wavelets. 
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Where: - ( )ωH  is the Fourier transform of )(th . 
The constant Ch is the admissibility constant of the function h(t). The 

wavelet transform of a function f  with respect to a given admissible mother 

wavelet (t)h is defined as:  

∫
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Where * denotes the complex conjugate. However, most wavelets are real 

valued. The daughter wavelets are generated from a single mother wavelet 
)(th  by dilation and translation: 
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Where a>0 is the dilation factor and b is the translation factor [3].  
In 1958, Rosenblatt demonstrated some practical applications using the 

perceptron. The perceptron is a single level connection of McCulloch-Pitts 
neurons sometimes called single-layer feedforward networks. The network is 
capable of linearly separating the input vectors into a pattern of classes. In 
such an application, the network associates an output pattern (vector), and 
information is stored in the network by virtue of modifications made to the 
synaptic weights of the network [3]. Fig.2 illustrates perceptron, which is 
described by: 
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Where i = 1, 2... M (output nodes), j = 1, 2… (Inputs). 
Rosenblatt derived a learning rule based on weights adjusted in proportion 

to the error between the output neurons and the desired output (target). The 
weight adaptations are given by: 

)()]()(ˆ[)( nxnynynw jiiij ∗−=∆ µ       (4) 

Where i = 1, 2… M (output nodes), 
j

= 1, 2... N (inputs), i
ŷ

  is the 
desired output at node i  of time n  and µ  is a learning rate. 
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Wavelet transform have proven to be very efficient and effective in 
analyzing a very wide class of signals because of their attractive feature. 
Wavelet transform describes signals in terms of their local shifts. Thus, they 
provide a time-frequency representation, the generation of wavelets and a 
calculation of all wavelet expansions employing summation, not integrals, that 
is well matched to be implemented by digital computers [20]. 

 

Fig. 2. Single-Layer Perceptron Feedforward 

4. PID Controller 

Here, an adaptive characteristic was suggested to improve a fuzzy NWN 
algorithm and reduce the learning cycle time. PID controller consists of: 
Proportional Action, Integral Action and Derivative Action. It is commonly refer 
to Ziegler-Nichols PID tuning parameters. It is by far the most common control 
algorithm [1]. In this paper, PID controller’s algorithm is mostly used in 
feedback loops. PID controllers can be implemented in many forms. It can be 
implemented as a stand-alone controller or as part of Direct Digital Control 
(DDC) package or even Distributed Control System (DCS). The latter is a 
hierarchical distributed process control system which is widely used in 
process plants such as pharceumatical or oil refining industries. It is 
interesting to note that more than half of the industrial controllers in use today 
utilize PID or modified PID control schemes. A simple diagram illustrating the 
schematic of the PID controller feeding a second order system (plant, 
process) with a suitable signal is shown in Fig.3a.  

In proportional control, the relationship between the output of the controller 
u(t) and the actuating error signal e(t) is  

( ) ( )teKtu P=   
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Where:- 
KP is the proportional gain of the controller. It uses proportion of the system 

error to control the system. In this action an offset is introduced in the system. 

In Integral control,   ( ) ( )dtteKtu
t

I ∫=
0

  

Where:-  
KI is the integral gain of the controller. It is proportional to the amount of 

error in the system.  
In this action, the I-action will introduce a lag in the system. This will 

eliminate the offset that was introduced earlier on by the P-action. In 

derivative control action, ( ) ( )
dt
tedKtu D= , where KD is the derivative gain of 

the controller. The value of the controller output here is changed at a rate of 
the actuating error signal e(t). Derivative control action, when added to a 
proportional controller, provides a means of obtaining a controller with high 
sensitivity. 

D
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Fig. 3a. Schematic of the PID Controller – Non- Interacting Form 

5. Experimental Process Identification and Design of PID 
Parameters   

For the system under study, Ziegler-Nichols tuning rule based on critical gain, 
critical period and a certain deadbeat will be used. In this method, the integral 
time Ti will be set to infinity and the derivative time Td to zero. This is used to 
get the initial PID setting of the system. This PID setting will then be further 
optimized using the “steepest descent gradient method” (Fig.3b). The transfer 
function of the PID controller is  
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( ) ( )Dip TTKsG ++= 1  (5) 

 
The objective is to achieve a unit-step response curve of the designed 

system that exhibits a maximum overshoot of 25 %. In this method Z-N, only 
the proportional control action will be used. The Kp will be increased to a 
critical value at which the system output will exhibit sustained oscillations as it 
is shown in Fig. 3c. 
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Fig. 3b. PID Control Algorithm 

If the maximum overshoot is excessive, let's say about 50%, fine tuning 
should be done to reduce it to less than 25%. The transfer function of the 
process-PID can be approximated in the form of a second order transfer 

function ( ) 225.651
75.4

ss
sG

++
= . The identified model is approximated as a 

linear model, but exactly the closed loop is nonlinear due to the limitation in 
the control signal. From Ziegler-Nichols frequency method of the second 
method [1], table (1) suggested tuning rule according to the formula shown. 
From these we are able to estimate the parameters of Kp, Ti and Td. 
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Fig. 3c. Illustration of Sustained Oscillation of PID with Classical Method 
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Table 1. Various Suggested Tuning Values 

Controller Kp Ti TD 
P 0.5Kr 50ms 50ms 
PI 0.5Kr 1/1.2Per 50ms 
PID 0.8Kr 0.5Per 0.12Per 

 

PID - block diagram and control algorithm

Deadbeat - control algorithm

GAIN

P_Part

KP := 0.8

I

I_Part

KI := 0.11

UL := 1

D

D_Part

KD := 0.78
UL := 1
LL := -1

Sum_PID

G(z)

DeadBeat

N := 3
D := 3

G(s)

Process_PID

N := 0
D := 2

G(s)

Process_DB

N := 0
D := 2

NEG

NEG

LIMIT

Limiter

UL := 1
LL := -1

STEP1

T0 := 0.5
AMPL := 1

B[0] := 4.87

A[0] := 1

A[1] := 5

A[2] := 6.25

B[0] := 4.87

A[0] := 1

A[1] := 5

A[2] := 6.25

 

STEP1.VAL 
Process_PID.V A

t [s ] 

1.2

0

0.2

0.4

0.6

0.8

1

0 202.5 5 7.5 10 13 15 18  

(a) 



Ibrahiem M. M. El Emary ,Walid Emar, and Musbah J. Aqel 

ComSIS Vol. 6, No. 2, December 2009 150 

 

STEP1.VAL 
Process_DB.VA

t [s ] 

1

0

0.2

0.4

0.6

0.8

0 212.5 5 7.5 10 13 15 18  

(b) 

Fig. 4. Comparison between: (a) PID-Control Algorithm and (b) Deadbeat-Control 
Algorithm 

In this paper, it is shown that the inefficiency of designing PID controller 
using the classical method will be improved by using deadbeat control 
algorithm and neural wavelet network algorithm. Fig. (4) shows the different 
dynamic behaviour of a (classical) PID algorithm and a time-discrete 
deadbeat controller with the same process. Now, the PID controller shown in 
Fig. (3) is replaced with fuzzy PID controller with NWN structure. Fuzzy 
controllers are designed with one specific set of rules (a rule base) that 
indicates what the plant input should be, given the current inputs to the 
controller. The fuzzy controller inputs are fuzzified to form fuzzy sets that can 
be used by the inference mechanism. The schematic circuit and block 
diagram of the fuzzy controller is shown in Fig.5. 
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Fig. 5. Fuzzy Control System 

The inference mechanism then decides what rules to apply for these inputs 
by matching the fuzzified inputs to the premises of the rules in the rule base. 
The inference mechanism provides a fuzzy set that indicates the certainty that 
the plant input should take on various values. Then de-fuzzification is used to 
convert the fuzzy set produced by the inference mechanism into a crisp 
output to be used by the plant. For this purpose we simply use the wavelet 
network. 

6. Wavelet Network Algorithm 

The wavelet architecture, shown in Fig.6 approximates any desired output 
signal )(ty  by generalizing a linear combination of a set of daughter 

wavelets )(, th ba , where the daughter wavelets )(, th ba  are generated by 

dilation a and translation b from a mother wavelet )(th . Table (2) gives 
several mother wavelet filters and their derivatives [3]. 

)()(, a
bthth ba

−=  (6) 

Where a>0 … Dilation factor, b … Translation factor. 
A wavelet network is a 3-layer feed forward neural network [14]. First the 

WN parameters, dilation a's, translation b's, and weight w's should be 
initialized and the desired sets of data, the input signal x(t), the desired output 
(target) y(t) and the number of wavelons k are given.  Assuming that the 
network output function satisfies the admissibility condition and the network 
sufficiently approximates the target. The approximated signal of the network 

)(ˆ ty can be represented by equation (7): 

∑×=
=

k
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Where x(t) is the input signal, k is a number of wavelons, iw  is the weight 

coefficients between hidden and output layer, i=1,2,…,k., and )(, th ba  is a 

set of daughter wavelets generated from a mother wavelet )(th as described 
in equation (7). 

Table 2. Derivatives of the various wavelet filters with respect to its translation 

      

 
 

 
After constructing the initial WN and after calculating output signal of the 

network, the training of WN starts. It is further trained by the gradient descent 
algorithms like least mean squares (LMS) to minimize the mean-squared 
error. During learning, the parameters of the network are optimized. The 
wavelet network parameters

i
w ,

i
a , and 

i
b  can be optimized in the LMS 

algorithm by minimizing a cost function or the energy function,E , over all 
function interval. Thus by denoting 

( ) )(ˆ)( tytyte −=  (8) 

The energy function is defined by: 

∑
=

=
T

t

teE
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2 )(
2
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 (9) 
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Where T the total interval of function is, )(ty  is the desired output 

(target) and )(ˆ ty is the actual output signal of NWN. 

To minimizeE , the method of steepest descent is used which requires the 

gradients

i
w
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∂
∂
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i
a
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∂
∂
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i
b
E
∂
∂

 for updating the incremental changes to 

each particular parameter iw , 
i
a , and ib , respectively. The gradients of 

E  are given by the following expressions: 
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Where
i

i
a
bt −

=τ  The derivatives of the various wavelet filters with 

respect to its translation

ib
h
∂
∂ )(τ

 are given in Table (2). The incremental 

changes of each coefficient are simply the negative of their gradients: 

w
Ew
∂
∂−=∆  (14) 
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b
Eb
∂
∂−=∆  (15) 

a
Ea
∂
∂−=∆  (16) 

Thus each coefficientw ,b , and a  of the network is updated in 
accordance with the rule: 

wtwtw
w
∆+=+ µ)()1(  (17) 

btbtb
b
∆+=+ µ)()1(  (18) 

atata
a
∆+=+ µ)()1(  (19) 

 
Where µ  is the fixed learning rate parameter [3]. The network parameters 

are modified using the gradient descent algorithm till one of the stopping 
conditions is satisfied. The algorithm is stopped when one of several 
conditions is satisfied: the Euclidean norm of the gradient, or of the variation 
of the gradient, or of the variation of the parameters, reaches a lower bound, 
or the number of iterations reaches a fixed maximum, whichever is satisfied 
first. The final performance of the wavelet network model depends on 
whether: (i) the assumptions made about the model are appropriate, (ii) the 
training set is large enough, (iii) the family contains a function which is an 
approximation of f with the desired accuracy in the domain defined by the 
training set, (iv) an efficient training algorithm is used [20]. 

7. Morlet Mother Wavelet Basis Functions 

In this section, it will be shown through experimental simulations how various 
types of mother wavelet basis functions perform their learning ability. As we 
know, wavelets are orthogonal basis functions, thus they can be added or 
removed one at a time without having to update the parameters of the 
previously placed basis functions resulting to an incrementally improvement at 
low computational cost. Moreover, wavelets are local basis functions that 
provide less interfering than global ones, leading to a noncomplex 
dependency in the neural network (NN) parameters. The following sections 
will confirm this idea by providing several observations derived from the 
results of the MATLAB simulations.  
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Assuming the training data are stationary and sufficiently rich, good 
performance can usually be achieved with a small learning rate. Thus, all 
learning rate parameters for weights, dilations, translations and feedback 
coefficients are fixed at 0.01, 0.05, 0.05, 0.02, and 0.02, respectively. All initial 
weights wk and dilations ak are set to 0 and 10, respectively. Note that if the 
dilation parameters are set too wide, they can cause several overlapping 
partitions and thus cannot be realized.  

 
Fig. 6a. Wavenet Simulations with 30 Morlet Wavelets: Voiced model output (green),  
NN APPRX. OUTPT (red) 
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Setting ak too narrow may result in longer convergence. Initial translation 
parameters bk are spaced equally apart throughout the training data to 
provide non-overlapping partitions throughout the neighbouring intervals. 
Finally, the initial coefficients c and d should be set so that the system has 
poles inside the unit circle, thus both are set to 0.1. The number of 
coefficients for each feedforward and feedback m and n are both set to 2 as 
well. The learning epoch will terminate when the desired normalized error of 
0.03 is reached. Figure 6 will describe the results of the wavenet network 
performance employing Morlet. 

 

Fig. 6b. Wavenet Parameter Updates with 10 Morlet Wavelets 

 

Fig. 6c. Wavenet Parameter Updates with 30 Morlet Wavelets 

Figs.6b and 6c capture the learning performance of the wavenet network 
using 10 and 30 Morlet wavelets, respectively. We can conclude that the 
wavenet network composed of more wavelets can reach initial convergence 
with reference to the number of iterations very rapidly. However, to reach the 
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desired error goal 0.03, networks with a large number of wavelets cannot 
converge easily and the error performance starts to oscillate. This behavior 
may be caused by the rate of learning stepsize not being small enough, 
causing the iteration process to bounce between the two opposite sides of a 
valley rather than following the natural gradient contour (as shown in Fig. 6c). 
Fig. 6d and Table 3 provide information on the Morlet wavenet characteristic. 
As we can see, when the number of wavelets K is small, for example, for K = 
3, it takes 28 iterations to reach error of 0.8 while it takes 3 iterations for K = 
35, but when the error of 0.03 is the target, K = 8 takes 23 iterations while K = 
30 takes 432 iterations. Large K is also undesirable to the expense of more 
coefficients to be updated. Small K can also take a large amount of time to 
compute as for K = 3 take more than 2000 iterations to reach error of 0.04. In 
conclusion, the number of Morlet wavelets between K = 8 to K = 16 is 
sufficient to approximate the unknown voice model. 

 
Fig. 6d. Iterations vs. Number of Morlet Wavelets per Normalized Errors 
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Table 3. Number of Iterations vs. Number of Morlet Wavelets Employed 

Number of  

   Number 
of 

Wavelets, 
K  

    

Iterations  3 5  6  8  10 12 16  20  25  30  35  
Error of 0.8  28 17  8  6  5 5 4  4  4  3  3  
Error of 0.5  72 47  13  9  8 8 7  6  6  5  5  
Error of 0.3  231 111  17  11 10 10 9  8  7  7  6  
Error of 0.1  278 157  36  17 16 15 14  13  12  26  28  
Error of 0.05  853 310  67  20 19 19 18  27  22  36  54  
Error of 0.04   2000+ 348 78  21 21 21 20  28  23  56  348  
Error of 0.03  671  94  23 23 24 23  29  27  78  432  

8. Simulation OF Configuration and Results 

The fuzzy NWN structure and its learning algorithm are used for development 
controller to control of dynamic plant. The structure of control system is given 
in figure 7. Neural control system synthesis is performed in the closed control 
system. For learning of fuzzy NWN the error between target characteristic of 
control system and output of control object ( ) ( ) ( )( )tytgKty e −=∆ ,  is used. 
This error is used for correction network parameters for adjusting of controller. 
Using learning algorithm the optimal values of weight coefficients of fuzzy 
NWN controller are found. 

The NWN algorithm, with one hidden layer of twenty [20 Morlet, 20 Slog1] 
wavelons in the hidden neurons (k = 20) and fixed learning rate of 1 is 
implemented to identify this hard nonlinear function:   

))9.0(4sin(
))6.0(3sin()1()(

2)5.0(3

21200252

−+

−+−=
−

−⋅

xe
xexxf

x

x

π

π
 (20) 

Initial w's and dilations a's are set to 0 and 9 respectively. b's are spaced 
equally apart throughout the training data. The block diagram of Fuzzy 
controller with a second order system is shown in Fig. 8. The simulation 
results shown in Fig. (9a, b, c).  Figure (9a) shows the MSE against the 
number of iterations for off-line training of the network. Fig. 10 illustrates the 
performance results of the network identifying the function given above. 
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Fig. 7. Structure of NWN 

  
Fig. 8. The Simulink Control Model of a Second Order System with NWN Controller 

 

(a)   Mean-Square Error per learning iteration 
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(b) Desired and Identified output signal per time. 

 

(c) Desired and Identified output signal per time 

Fig. 9. Simulation results of NWN training 
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(a) Step Response of Designed System 
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(b) Improved system 

Fig. 10. Input – output data set 
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9. Conclusion 

In this paper, an advanced wavelet network, called Neural Wavelet Network is 
presented as an interesting alternative to wavelet networks. This technique 
absorbs the advantage of high resolution of wavelets and the advantages of 
learning and feed-forward of neural networks. The algorithm of function 
identification is designed and implemented using Matlab 7 and Simplorer 6 
tool. The Neural Wavelet Network (NWN) structure is implemented and an 
example of a second order system is carried out to verify this implementation. 

It can be concluded that this structure achieves an approximation assuming 
reasonable choice of the number of wavelets and mother wavelet basis 
functions. The Neural Wavelet Network is proved to be a controller analogous 
to PID controller. After the off-line training of the NWN controller, it shows the 
ability to get the specified position response exactly at the specified time 
when it's embedded in the control system. No significant difference between 
the position responses for both PID and the proposed NWN controllers, 
indicating further the validity of the idea of this research. 
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